
December 1998 The Delphi Magazine 59

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Enhanced Grids

QI’ve noticed that both
TStringGrids and TDBGrids

have vertical scrollbars when
necessary. When you drag the
scrollbars to a new position, they
update the underlying grid as you
release the mouse. This matches
the behaviour of Microsoft Word.
However, I also notice that the
scrollbar on the Delphi code editor
dynamically updates the editor as
you are dragging the scrollbar. Is it
possible to make the VCL grid com-
ponents act in a similar, more
dynamic, fashion?

ATo answer this requires
some knowledge of what

happens when you manipulate a
scrollbar. A scrollbar is either set
up as an independent entity (eg a
TScrollBar component), or as part
of another control (as in the case of
the VCL grids). Either way, when
they are clicked on, or clicked and
dragged, they send messages to an
underlying window that picks
them up and acts upon them.

If the scrollbar is set to be verti-
cal, it sends a wm_VScroll message
to its underlying window when it is
clicked, and if horizontal it sends a
wm_HScroll message. Depending on
where the scrollbar is clicked, it
sends different accompanying
information with the scroll mes-
sage in the low word of the WParam
parameter.

To get some stable terminology
for the various sections of the
scrollbar, I will refer to Delphi 4’s
Win32 API help file. (See the boxout
on page 62 for more details about
Win32 API help and how to get it.)
According to the help: ‘a scrollbar
consists of a shaded shaft with an
arrow button at each end and a
scroll box (sometimes called a

thumb) between the arrow but-
tons.’

It then goes on to say: ‘When the
user clicks an arrow button, the
application scrolls the content by
one unit (typically a single line or
column). When the user clicks the
shaded areas, the application
scrolls the content by one window.
The amount of scrolling that
occurs when the user drags the
scroll box depends on the distance
the user drags the scroll box and
on the scrolling range of the
scrollbar.’

So, as Figure 1 illustrates, when
the left arrow button of a horizon-
tal scrollbar, or the top arrow
button of a vertical scrollbar is
pushed, the WParam value is set as
sb_LineUp. The right arrow button
and bottom arrow buttons give
sb_LineDown. The shaft area to the
left, or above the thumb, generates
sb_PageUp and the area to the right,
or below the thumb, gives
sb_PageDown. When you click on the
thumb and drag it around, it gener-
ates appropriate messages as you
do so with sb_ThumbTrack as the

associated value. When you
release the thumb, sb_Thumb
Position is sent. In addition to all
these, when any scroll operation
(a click on an arrow button, a click
on the shaft area or a drag of the
thumb) is completed, another
message is sent along with a WParam
of sb_EndScroll.

If you have scrollbars that can
take the focus, such as TScrollBar
components (a scrollbar flashes
its thumb when focused), then
pressing Home and End take you to
the left/top or right/bottom of the
scrollbar and generate sb_Top and
sb_Bottom WParam values
respectively.

Incidentally, TScrollBar compo-
nents translate both wm_HScroll
and wm_VScroll messages into
OnScroll events, and to indicate
what scroll operation took place,
the event handler is passed a value
from the TScrollCode type as the
ScrollCode parameter.

With this information, and what
the questioner described as the
current behaviour of the VCL grid
controls, it should hopefully be

➤ Figure 1:
WParam
values for
WM_HSCROLL
and
WM_VSCROLL
messages.

60 The Delphi Magazine Issue 40

type
TScrollingStringGrid = class(TStringGrid)
public
procedure WMHScroll(var Msg: TWMHScroll);
message wm_HScroll;

procedure WMVScroll(var Msg: TWMVScroll);
message wm_VScroll;

end;

procedure TScrollingStringGrid.WMHScroll(var Msg: TWMHScroll);
begin
inherited;
if Msg.ScrollCode = sb_ThumbTrack then
Perform(wm_HScroll, MakeLong(sb_ThumbPosition, Msg.Pos), Msg.ScrollBar)

end;

procedure TScrollingStringGrid.WMVScroll(var Msg: TWMVScroll);
begin
inherited;
if Msg.ScrollCode = sb_ThumbTrack then
Perform(wm_VScroll, MakeLong(sb_ThumbPosition, Msg.Pos), Msg.ScrollBar)

end;

➤ Listing 1

clear that these grid components
are programmed to react to
sb_ThumbPosition, but do not act
upon sb_ThumbTrack. In the case of
DBGrid components, this is proba-
bly intentional, as the requirement
to redraw as you drag the thumb
through a set of records brought
back from an SQL expression could
be time consuming and expensive
in terms of network traffic.

So what we need to do to solve
the problem is to detect any
sb_ThumbTrack messages, indicat-
ing that the thumb is being
dragged, and send an sb_Thumb
Position message straight to the
underlying control, to get the same
effect as if we let go of the thumb. In
other words, as the thumb track
messages come up, we entice the
grid to redraw if necessary, by
giving it faked thumb position
messages.

Listing 1 shows the key parts of a
new grid that performs this opera-
tion. This code has been added
into two new components,
TScrollingStringGrid (Scrolling-
StringGrid.Pas) and TScrolling-
DBGrid (ScrollingDBGrid.Pas). You
can see that the TWMHScroll and
TWMVScroll message cracker
records give you the low word of
WParam as a field called ScrollCode.

If you install these two compo-
nents, you should find that their
horizontal and vertical scrollbars
now perform dynamic updating of
the grid as the thumb is dragged.
To check it out, after installing
these two components, you can
run the GridTest.Dpr sample
project on the disk.

Wm_HScroll/wm_VScroll
WParam value

OnScroll ScrollCode
parameter value

sb_Bottom scBottom

sb_EndScroll scEndScroll

sb_LineDown scLineDown

sb_LineUp scLineUp

sb_PageDown scPageDown

sb_PageUp scPageUp

sb_ThumbPosition scPosition

sb_ThumbTrack scTrack

sb_Top scTop

➤ Table 1: Scroll message constants and corresponding VCL
enumerated type values.

Incidentally, if you are using
DBGrids in Delphi 1 or 2, or using
DBGrids against either SQL data or
filtered local data in any version,
you might be concerned about the
behaviour of the vertical scrollbar.
The thumb will only ever take up
three positions: top middle or
bottom.

When the DBGrid was originally
designed, it was a generic device
for displaying a data set. Whilst
Paradox and dBase files have
record numbers (which were sur-
faced in Delphi 2 by the RecNo prop-
erty), SQL data sets and filtered
data sets do not. The BDE has no
idea how many records will be in
any arbitrary SQL or filtered result
set. So with this information in
hand, the DBGrid was designed to
allow scrolling, but had to cater for
the lack of record numbers. With-
out a record number, you have no
idea how far through the result set

you are, and so the thumb of the
scrollbar cannot be positioned
proportionately. As a conse-
quence, the DBGridhas its thumb at
the top when the BOF property is
True, at the bottom when EOF is
True, and right in the centre under
all other circumstances.

The DBGrid was improved in
Delphi 3 to cater for the existence
of a record number in some cir-
cumstances, and to display a pro-
portional scrollbar when it is
available. But when it is not avail-
able, the grid’s scrollbar goes back
to its old tri-state behaviour.

Restarting Windows

QMy application sometimes
makes changes to the Win-

dows registry. In these cases I need
to get Windows restarted for the
changes to have any effect. Whilst I
can reboot using ExitWindowsEx, I
want to make my application look
consistent with Windows itself.
The Control Panel applets all in-
voke some standard looking dialog
to offer the user the choice of
rebooting. How do I call this dialog
in my application?

AMy! Another Windows termi-
nation question. You might

like to also refer to Forcing Win-
dows Shutdown in Issue 36’s Clinic,
as well as Stopping Windows Shut-
down and Program Running Upon
Windows Start-Up in Issue 38.

As well as consistency with Win-
dows, the Windows 95 version of

62 The Delphi Magazine Issue 40

this reboot dialog is rather pleas-
ant, in that if you hold the Shift key
down whilst pressing the Yes
button (to accept the Windows
restart), it will not reboot the
machine. Instead, Windows just
shuts down and restarts without a
reboot. This means the time taken
to restart Windows is much
reduced.

In researching this question I
referred to Dr GUI from the
Microsoft Developer Network. In
Microsoft Developer Network News
from March/April 1997, Dr GUI was
asked a similar question. The
eminent Doctor describes
ExitWindowsEx, but says this does
not help perform a bootless
restart. The conclusion reached is
that one has to write a thunk to call
the 16-bit API routine ExitWindows
which does support the shorthand
restart behaviour.

Now whilst it is true that such a
thunk would do the job on Win-
dows 95, our desire here is to gain
access to the dialog that Windows
already has somewhere, and
thereby have all this done for us.

The API that spawns the reboot
dialog (as well as the ones that
launch the run application dialog,
the find file dialog, the choose icon
dialog etc) comes from an undocu-
mented portion of SHELL32.DLL. To
make things tricky for program-
mers, the APIs in question are
exported from this DLL without
any name information, they are
exported by ordinal only.

If we can find the relevant
information, this poses little prob-
lem for Delphi developers. For
information about the undocu-
mented portions of SHELL32.DLL,
I recommend a trip to
www.geocities.com/SiliconValley/
4942. Here you will find James
Holderness’s Undocumented Win-
dows 95 website. This gives pretty
full information (using the C
syntax) about these APIs and typi-
cally highlights differences to be
found between Windows 95 and
Windows NT implementations.
Choosing James’s Function Index
link will allow you to get to the doc-
umentation for the API RestartDlg.
A Delphi declaration looks like
Listing 2.

Windows API Help Files
The Windows API is the set of subroutines, and their associated required

types and constants, that Windows itself defines for the programmer to
use in order to write Windows applications. All Windows programs use the
Windows API in order to work.Tools like Delphi have been developed to
shield developers from the complexity inherent in the Windows API.
However, when the nice components and support routines in Delphi fail to
meet a certain programming task, you can always fall back on direct calls to
the Windows API.

Microsoft develops Windows, and hence writes the Windows API.
Microsoft also documents the Windows API. Unfortunately, since the API was
developed originally in C, and is targeted at C and C++ programmers,
Microsoft’s documentation is written with C syntax.

Delphi 1 came with a Delphi-ised version of the Win16 API help file. This
took the help authors quite a long time to translate and, in cases, there are
errors. In Delphi 1, the Windows API information in the help file is hooked
into the context-sensitive help system. Place your cursor on an API function
name in the editor, press F1 and the help comes up. However you cannot find
all the keywords from the API help file by looking in Delphi’s help index.

You can choose Help | Windows API to jump to the file directly. Addi-
tionally, you are also able to add a Windows API speedbutton onto your
speedbar. Right click the speedbar, choose Configure..., select the Windows
API help command from the Help category and drag it onto some empty
area on the speedbar.

Unfortunately, as Delphi 2 was being developed, it became apparent that
translating the Win32 help file was too mammoth a task. The problem was
not just the increased size of the file, but also the fact that the Windows API
seemed to be ever expanding, with Microsoft updating the original help file
on a regular basis.

So Delphi 2 (as well as versions 3 and 4) comes with the original C program-
mer’s Win32 API help file, as licensed to Inprise from Microsoft. They all
support context-sensitive help for API routines in the editor, but have hidden
the Help | Windows API menu item. Fortunately, despite hiding it, you can
still place the speedbutton for it on the speedbar. As an alternative you can
navigate to Delphi’s HELP directory and locate Win32.Hlp from there.

Delphi 4 makes the help file marginally more accessible by adding it into
the Startmenu Delphi folder. You can access this by clicking on your task bar’s
Start button, choosing Programs, Borland Delphi 4, Help, MS SDK Help Files, Win32
Programmer’s Reference.

Having found the API help file, it may not be particularly useful unless you
know how to speak the C language. But examination of it, and appropriate
sections of the relevant import unit, can be educational. The source for these
import units can be found in Delphi’s SOURCE\RTL\WIN directory in the
Professional and Client/Server versions. The interface sections of these units
can be found as .INT files in the DOC directory in the Standard version.

From examining these, you can learn how Inprise have represented various
C parameters, parameter types and data structures in Pascal. The primary
import unit is Windows in 32-bit and the WinProcsand WinTypespair in Delphi 1.

You may also wish to investigate the work being done by the Jedi group.
They are attempting to translate all the additional Windows APIs into Delphi
Pascal that Inprise have not yet done themselves. You can find the Jedi group
at www.delphi-jedi.org.

Because the Win32 SDK is ever growing, and because Inprise only have
access to reasonably old versions of the API documentation, Delphi 4’s
README suggests referring to the Microsoft Developer Network (MSDN)
website http://msdn.microsoft.com/developer. This will always have the most
up-to-date SDK documentation available.

December 1998 The Delphi Magazine 63

function RestartDialog(hwndOwner: HWnd; lpstrReason: PChar; uFlags: UINT):
Integer; stdcall; external 'Shell32.Dll' index 59;

➤ Listing 2

function FindWindowA(lpClassName, lpWindowName: PAnsiChar): HWND;
stdcall; external 'user32.dll' name 'FindWindowA';

function FindWindowW(lpClassName, lpWindowName: PWideChar): HWND;
stdcall; external 'user32.dll' name 'FindWindowW';

➤ Listing 3

The first parameter is the
window that owns the dialog. The
second parameter is an optional
string (we will come back to this).
The last parameter can take the
same values supported by both
ExitWindowsEx and ExitWindows,
including ew_RestartWindows. In
fact it is the ew_RestartWindows flag
that is used to get the Shift key to
do its thing. The function returns
mrYes or mrNo, dependent on the
button pressed. If mrYes is
returned, Windows will attempt to
restart (but may not be successful
due to another application
objecting).

The dialog always has a caption
of System Settings Change.
Assuming the lpstrReason parame-
ter is nil, the dialog displays a
default message. If uFlags is
ewx_ShutDown the text is ‘Do you
want to shut down now?’ All other
values use the message ‘You must
restart your computer before the
new settings will take effect. Do
you want to restart your computer
now?’

If lpstrReason has a textual value
then it is written as the first piece
of text in the dialog, followed
immediately by whatever text
would be written anyway. Because
it is immediately followed by the
other text, you should finish the
parameter with a space, or a car-
riage return character. If
lpstrReason starts with a # charac-
ter, the normal text is not written in
the dialog box.

In the documented portion of the
Win32 API, any routines that take
textual versions have two imple-
mentations. Take FindWindow for
example. There is not really any
such routine as FindWindow.
Instead, Windows implements the

➤ Figure 2

routines FindWindowA and
FindWindowW (see Listing 3).

FindWindowA takes ANSI strings
(PAnsiChars actually) and
FindWindowW is defined to take
Unicode strings (wide strings, or
PWideChars in C lingo). This allows
developers to write applications
using normal ANSI strings or
Unicode applications. The Pascal
function name FindWindow is

defined in the Windows import unit
to map onto FindWindowA:

function FindWindow(
lpClassName,
lpWindowName: PChar):
HWND; stdcall;
external ‘user32.dll’
name ‘FindWindowA’;

RestartDialog is not documented
and so is slightly different. On
Windows 95 it always takes ANSI
strings and on Windows NT it
always takes Unicode strings. As a
consequence, when passing tex-
tual information to this API you
need to check which platform you
are running on to ensure that you
pass the right type of characters
along.

Figure 2 shows a form with 4
buttons, each of which executes a
line of code similar to that written

64 The Delphi Magazine Issue 40

function RestartDialog(hwndOwner: HWnd; lpstrReason: PChar; uFlags: UINT):
Integer; stdcall; external 'Shell32.Dll' index 59;

function RestartDialogW(hwndOwner: HWnd; lpstrReason: PWideChar; uFlags: UINT):
Integer; stdcall; external 'Shell32.Dll' index 59;

procedure TForm1.Button3Click(Sender: TObject);
const
Msg = 'I have played with your registry!'#13#13;

begin
if Win32Platform = VER_PLATFORM_WIN32_WINDOWS then
RestartDialog(Handle, Msg, ew_RestartWindows)

else
RestartDialogW(Handle, Msg, ew_RestartWindows)

end;
procedure TForm1.Button4Click(Sender: TObject);
begin
if Win32Platform = VER_PLATFORM_WIN32_WINDOWS then
RestartDialog(Handle, '#I have played with your registry!'#13#13 +
'Restart Windows 95?', ew_RestartWindows)

else
RestartDialogW(Handle, '#I have played with your registry!'#13#13 +
'Restart Windows NT?', ew_RestartWindows)

end;

➤ Listing 4

procedure TForm1.GridClick(Sender: TObject);
var
Pt: TPoint;
Col, Row: Longint;

begin
GetCursorPos(Pt);
Grid.MouseToCell(Pt.X, Pt.Y, Col, Row);
Caption := Format('Cell clicked was (%d, %d)', [Col, Row])

end;
procedure TForm1.GridMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
Col, Row: Longint;

begin
Grid.MouseToCell(X, Y, Col, Row);
Caption := Format('Cell clicked was (%d, %d)', [Col, Row])

end;

➤ Listing 5

in its caption. Below the form are
the four dialogs generated. The last
two buttons do send text to
RestartDialog, as you can see, and
so in fact the implementations of
their button handlers are not quite
as straightforward as they could
be. Listing 4 shows how to write
platform dependent code for these
buttons. You can see that two
import declarations for Restart
Dialog have been written, one for
use in Windows 95, one for use in
Windows NT. If no text is being
passed to the API, it is irrelevant
which one you choose.

As you can see, when you define
a Pascal string constant it doesn’t
matter what string data type a sub-
routine call is expecting, your con-
stant can be passed along quite
happily. In fact, the same string
constant can be passed along to
several routines, as a String,
ShortString, WideString, PChar,
PAnsiChar and PWideChar, and the
compiler deals with the require-
ments sensibly, translating the
string when needed.

TStringGrid Coordinates

QDo you know how I can find
out what cell on a string grid

I am selecting on a single mouse
click?

AThe TStringGrid class
implements a convenient

MouseToCellmethod. This takes the
mouse coordinates and translates
them into grid coordinates. So if
you have a string grid called Grid,
then you could use an OnClick
event handler or OnMouseDown
handler as shown in Listing 5.

Code Insight Customisation

QA Delphi 3 or 4 question. Is
there any way of forcing an

instance’s methods/properties to
be sorted alphabetically in the
pop-up code completion listbox?

ARight click on the kibitz win-
dow (as the Code Comple-

tion window is called internally),
which can be pulled up on demand
with Ctrl+Space, and choose Sort
By Name instead of Sort By Scope.

	Enhanced Grids
	Restarting Windows
	Windows API Help Files
	TStringGrid Coordinates
	Code Insight Customisation

